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A new version of the Fast Multipole Method (FMM) for potential fields is pre-
sented. While the old FMM uses multipole expansions to represent potentials, we
use specially designed basis functions, displaying much faster convergence. Fur-
thermore, we introduce an intermediate representation, in which most translation
operators are diagonal. As a result, in two dimensions we obtain an improvement
of a factor of three to five in speed, compared to previously published algorithms;
the improvement is expected to be much greater in three dimensions. The perfor-
mance of the method is illustrated with several numerical examples.
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1 Introduction

Fast Multipole Method (FMM) belongs to a class of algorithms developed for the rapid
evaluation of Coulombic interactions in large-scale particle ensembles. In two dimen-
sions, the existing implementations of the FMM rely on Taylor or Laurent (multipole)
expansions for the potential field (see [2],[4]), while the three-dimensional ones are based
on spherical harmonics (see [4]). The expansions, as well as the corresponding transla-
tion operators, are obtained algebraically from explicit formulas relating the Newtonian
potential and its partial derivatives at various locations.

In this paper, we construct a version of the FMM based on a different analytical
apparatus. Instead of multipole and Taylor expansions, we use specially designed bases,
consisting of singular functions of an appropriately chosen operator. The expansions
we use display much faster convergence than the previously used ones. In addition,
we introduce an intermediate representation consisting of complex exponentials, and
diagonalizing most translation operators. When these two techniques are combined, the
resulting algorithm is about five times faster than the old one for reasonably uniform
distributions, and about three times faster for highly non-uniform ones.

The structure of this paper is as follows. Section 2 introduces the mathematical
preliminaries. In Section 3 we describe the analytical apparatus to be used. Section 4
contains a detailed description of the algorithm, together with its complexity analysis.
Numerical experiments and the performance of the scheme are discussed in Section 5.

2 Mathematical preliminaries

2.1 Notation

For any number s > 0 we will denote by Di* the boundary of the square -3, 51x[-2,4],
and by D" the boundary of the square [—3, 3] x [—32, 2] (see Figure 1).

We will call " the open square within the inner square Di* and Q% the region
outside the outer square D%, If s = 1, we will simply write D" for Dir, D"“* for D3,

¥ for Q" and Q°* for Q""t
We will denote by Bi® the set consisting of the rectangle [—2, ] x [~ =2, 2] minus

272
two squares [—2, 28] x [——%, %) and [-3, 2] x [—=2, =I¢] (see Figure 2). :
For any s > 0 and a complex number 2o = zo + 7y, we denote by Q" ", the open |

square (zo— 2,130 +35) X (¥o—$,50+%). Finally, we define the region Q2% by the formula a[] .
2 = C\DZ, ) g

For any set S C R? we will denote its closure by 5.

In agreement with standard practice, we will denote by 1> the Hilbert space of all

complex sequences x = {z,}, such that 32, | z,|? < oo, with the inner product defined o —
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by the formula
(X,¥) = D _ zuTa. (1)
n=1
The standard basis of 2 will be denoted by e, e,,....

Let X be a piecewise smooth curve in R?. A function f : X — € belongs to the
vector space L2(X), if and only if,

fllz) 2 ([ 17()P dm)% < oo, @)

where the integration is performed with respect to the arclength dz. We say that a
function f: X — C belongs to the space L®(X), if and only if,

de
1 fllzeocx) 2 ess sup 1f(z)] < oo. 3)

2.2 Electrostatic potentials in two dimensions

In this section we list several facts from mathematical analysis, which will be used
throughout the paper; all of them are either well-known, or follow immediately from
well-known results.

A unit charge located at the point xo € R? generates a potential and a field given,
respectively, by the expressions

®x, (%) = —log(||x — xol)), 4)

X =l )

In this paper we will work with analytic functions of a complex variable, making no
distinction between a point x = (z,y) € R? and a complex number z = z + Y.
Since

Exy(x) =

®@x, (%) = —Re (log(z — 20)), (6)

following standard practice, we will refer to the analytic function log(z) as the poten-
tial due to a charge. To describe more complicated charge distributions we will need
derivatives of log(z), and we will also refer to them as potentials.

The following lemma is an immediate consequence of the Cauchy-Riemann equations.

Lemma 2.1 If f: C — C is analytic and

u(z) = Re (f(2)), (7)

then
Vu = (um uy) = (Re (fl)a —Im (f,)) (8)
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2.3 Hilbert-Schmidt theory for integral operators

Let X and Y be piecewise smooth curves in R?. We will be working with Lebesgue spaces
L*(X) and L*(Y) of functions square integrable with respect to arclength measures dz
and dy. The product space L*(X x Y) consists of functions k : X x Y — C, such that

] z2xxry = ( [ (2, 9)P da dy) < 0. (9)
XxY
We start with a well-known lemma (see, for example, [7], sec.VL.6).

Lemma 2.2 Ifk € L*(X x Y), then the expression

Af(@)= [ k(z,9) fw) dy (10)
defines a continuous operator A : L*(Y) — L*(X), and
Al < 1]l z2x xy) - (11)

Remark 2.3 The integral operator induced by a kernel k € L*(X X Y) via formula (10)
is usually referred to as a Hilbert-Schmidt operator (see, for ezample, [7]).

The following is an immediate consequence of Theorem VI.17. in [7]

Theorem 2.4 Ifk € L*(X x Y), then there exist two orthonormal systems of functions
{¢n} in L3(Y) and {,} in L*(X), and a sequence {s,}, n=1,2,..., of non-negative real
numbers such that

1. i S < 00, (12)
). k(z,y) = i 52 ¥n(2) 3a(8) (13)

in L*(X x Y) sense.  Moreover, the sequence {s,} is uniquely determined by
ke (X xY).

Theorem 2.5 (Canonical form for Hilbert-Schmidt operators)
Let A: L*(Y) — L*(X) be the integral operator induced by a kernel k € L*(X x Y) via
expression (10). Then, for any f € L*(Y),

Af=i5n<fa¢n>'¢'na (14)

n=1

where the functions ¥r,, ¢n and numbers s, are provided by Theorem 2.4. Equivalenty,

A¢n = snd)n, (15)
foraln=12,....




Remark 2.6 A finite dimensional version of Theorem 2.4 is known in numerical analysis
as the Singular Value Decomposition (SVD); the coefficients s, are referred to as the
singular values of the operator A, and the functions ¢, and ¢, are called left and right
singular vectors, respectively.

To restate Theorem 2.4 in these terms, we define operators U : I? — L?(X) and
V: 1 — L*(Y) by specifying them on the elements of the standard basis {e,} in 2 (see
Sec. 2.1), via the formulae

Ue, = 5, (16)

Ve, = ¢,. (17)
Now, (14) can be rewritten in the form

A=UDV~, (18)

where D : I — I is a diagonal operator with the coefficients s, on the diagonal, so that
foralln =1,2,...,
De, = s,e, . (19)

As in the finite dimensional case, U and V are isometries.

Remark 2.7 Given an operator A : L*(Y) — L*(X) defined by the formula (10), the
operator AT : L%(X) — L*(Y) is referred to as the transpose of A if and only if for all
f € L*(Y) and g € L*(X)

(41,9) = (AT, 7). (20)

Similarly, the operator A* : L?(X) — L*(Y) is referred to as the adjoint of A if and only
if for all f € L*(Y) and g € L*(X)

(Af,9) = (f,A%g). (21)

The following well-known lemma gives explicit expressions for the operators AT and A*
in terms of the kernel of A.

Lemma 2.8 If an operator A : L*(Y) — L*(X) is defined by (10), then the operators
AT A" : LX(X) — L*(Y) are defined, respectively, by the formulae

A1) = [ kay) f(z)da, (22

A1) = [ Meow) (o) do. (23)

The following lemma follows immediately from Lemma 2.8.

5




Lemma 2.9 Let v, and ¢, be the left and right singular functions the operator A de-
fined by (10), and s, its singular values. For each n=1,2,..., we define the functions
I € L(Y), ¢1 € L*(X) via the formulae

Yn = Pn, (24)

87 = Vn. (25)

Then ¢ and ¢ are, respectively, the left and right singular functions of AT. Moreover,
ATGL = sappy, (26)

for all n=1,2,.... Similarly, the functions ¢} € L*(Y), ¢5 € L*(X) defined for each
n=1,2,..., via the formulae

Y = Gny (27)
b = Yn, (28)

are left and right singular functions of A*, respectively. Furthermore,
AP = s07, (29)

for dll n=1,2,....

3 Analytical apparatus

3.1 Efficient representation of potentials

We will define the operators Coy: : L2(D™") — L%(D°“) and
Cin : L3(D°%) — L%*(D™) by the formulae

Cosf(er) = [, L as(e), (30)
Cngler) = [ % ds(e), (31)

where the integration is performed with respect to the arclength ds (see Section 2.1 for
the definitions of D' and D°*!). In other words, the kernel k : D°% x D" — C of the
operator C,y: is given by the expression

1
2 — 2y

k(22, 21) =

(32)

Clearly, the operators C,y; and C;, satisfy the conditions of Theorem 2.4. Moreover,
Cin = (Cout)T . Thus, a combination of Theorem 2.4 and Lemma 2.9 leads to the following
result.




Theorem 3.1 There exist orthonormal systems {¢2“'}, {¢i*} in L?*(D™) and {i"},
{454} in L*(D*“), and non-negative real numbers s, such that

¢Zut = ——;?’ (33)
45:1” = _E—Ea (34)
cm¢:;n = Sn :’;n, (35)
Cout ¢Zut = 8n :ut 3 (36)
for all n=1,2,.... Moreover,
1 ad .

k(z2,21) = = Z Sn Y (21) Y2(22). (37)

21— 29 n=1

The following theorem provides estimates for the magnitude of the singular values
and singular function of the operator Cous : L2(D™) — L?(D°“). Its proof is somewhat
involved, and can be found in Appendix A.

Theorem 3.2 There exist constants 0 < ¢; < ¢ <1 and ¢ > 0, ¢; > 0 such that

c1gqr < Sy (38)
sn < eq, (39)
4 lle < cnm, (40)
Y7 llo < en, (41)

for all n=1,2,....

Remark 3.3 Our numerical experiments show that the maximum values of the left
singular functions 13" are uniformly bounded, while left singular functions ¥:* grow as
logn. Furthermore, the coefficient ¢ in (39) is less then 0.37 (see Table 1). However, the
crude estimates (38-41) are sufficient for the purposes of this paper.

The following theorem states that the left singular functions 2* of the operator
Cout are restrictions to D of functions analytic on 0°%, which are bounded at infinity.
Similarly, the left singular functions ¢i* of the operator C;, are restrictions to Di* of
functions analytic on Q™ (see Section 2.1 for definitions of D", D°¥t Qin and Qout),

Theorem 3.4 Under the assumptions of Theorem 3.1, for each n=1,2,..., there exist
complez analytic functions U* : Q% — C and Ui* : Q" — € such that

1- :ln lD:‘n = :;ﬂ’ (42)
2. lI’;ut | Dout = Zut’ (43)
. lim ¥() =0, (44)




Table 1: Singular values s, of the operators C;, and C,,;.
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0.2359412633095143E4-01
0.8200026261260834E+-00
0.2969654528722792E+00
0.1117065933565274E+00
0.3899373405395550E-01
0.1419762842492349E-01
0.5167619274037499E-02
0.1882316460599726 E-02
0.6806476236529151E-03
0.2474684420248163E-03
0.9002598391003066 E-04
0.3279166684309465E-04
0.1189492698766364E-04
0.4326403854315149E-05
0.1574295791427948E-05
0.5732869472275525E-06
0.2081873704334665E-06
0.7573874125144114E-07
0.2756231794117075E-07
0.1003533522800739E~-07
0.3646364216302235E-08
0.1326702566316864E-08
0.4828202607541905E-09
0.1757742306275760E-09
0.6388965188123934E~10
0.2324723901442769E-10
0.8460347483779406E-11
0.3079818643909223E-11
0.1119689433835681E-11
0.4074314198593252E-12
0.1482764897026021 E-12
0.5397405796606410E-13
0.1962573461216843E-13
0.7141555758338406E-14
0.2599021334444648E-14
0.9460284166056962E-15
0.3440293867375512E~15

0.1251897831151196E-15

0.3475452384309655E400
0.3621518314828151E+00
0.3761602310170769E+00
0.3490728065576352E+00
0.3641002527554371E400
0.3639776390376512E+00
0.3642521557376765E400
0.3616010580049082E-+00
0.3635779123075419E+4-00
0.3637877346033592E+00
0.3642466921090881E+00
0.3627423712426653E400
0.3637184035515401E+4-00
0.3638809145978704E+00
0.3641545320448064E4-00
0.3631468873315051E400
0.3638008448531035E+00
0.3639130712466957E+-00
0.3640962000883560E+00
0.3633525072611107E+400
0.3638425806137019E+00
0.3639250220903513E+4-00
0.3640572795205558 E+00
0.3634756451678426E+00
0.3638654825924015E+00
0.3639291306175649E+00
0.3640298049003309E+4-00
0.3635569373703303E+00
0.3638789538842048E+-00
0.3639299339108355E+00
0.3640095478003274E+00
0.3636142130448670E+00
0.3638873091614348E+-00
0.3639292924948542E+00
0.3639940942646556 E+00
0.3636565040740656E+00
0.3638927020226409E+-00
0.3639280307828200E+00




Proof. It follows from (38) that s, > 0, for all n=1,2,.... Thus, (15) can be written as

out
8 (e) = 571 Cot (o) = 577 | e (43
for any z, € D°*. Therefore, the formula
out
out S | ¢n (6)
W) = 7t [ G ds) (46)

extends 12 to a function W2 continuous on °* and analytic in Q°%,
In a similar manner, we extend %" to an analytic function on the domain Q" con-
tinuous to the boundary D', by setting

W) = 1 Cud) = 7 [ B ey (a7)

O

Given a charge anywhere in the region Q™ the following two theorems allow us to
represent its potential inside the region Q°“ by a linear combination of left singular
functions ¥ of the operator Cyus. Similarly, the potential of a charge in the region (°vt
can be expressed inside the region Q™ as a linear combination of left singular functions
¥i* of the operator C;,.

Theorem 3.5 For any z; € D™, z, € D, -

L S () 62 (20). (48)

Zy — 29 n=1

Moreover, there exists a constant ¢; > 0, such that for any z, € D™, z, € D% and
integer N > 0
1

21 — 29

N
= 2 s (a) ¥(z) | < e N2V, (49)

I
n=1

Proof. Let us define Sy, N=1,2,..., by the formula

N
Sn=3 sn Y3 (50)

n=1

It follows immediately from Theorem 3.2, that for there exists a constant ¢; > 0, such
that for any integers M > N > 0,

M M
1S = Snlle = 1| D0 a7 2 lo < D sullto oo l|$2loo
n=N+1 n=N+1
[e ]
< Y Enfgt <o NGV (51)

n=N+41




Since ¢; N2¢"¥ — 0 as N — oo, the sequence { Sy} of continuous functions 350, s,1i )24
converges in the maximum norm to a limit, which we denote by S. Due to Theorem 2.4,
{Sn} converges to the function —— in L2(D°“’ x D), so we have

1

?
21— 22

S(z2,21) = (52)

for all z; € D", 2z, € D°%*. Thus, from (51) and (52) we obtain

1
i = S st 90 = S — Sl = I Jim S — Sl <1 N* 4. (53
1™ n=1
O
Theorem 3.6 For any z; € Q*, z, € Q°%,
= Y T (o) U (aa). (54)
%1 — %2 n=1

Furthermore, there ezists a constant ¢; > 0, such that for any z, € O™, z; € Q°*, and
integer N > 0,
1

21 — 22

N
- Z 5,0 () T (25) | < en N2 gV, (55)

n=1

Proof. Due to a combination of the maximum modulus principle for complex analytic
functions and (49), we have

1 N .
— Y Ui (21) U (22) | =

max max |
z] EQIM zp QO T 21 — 2o 'n—l
_ \I;out —
zfré%%{" zznelg‘}’{"' 21— 22 nz_:l Sn 21 (22) |
1 m ut 2 N
neDn JggﬁJ *nzlsnlﬁ () ¥7%(z2) | < aaN°g", (56)
which proves (55), and (54) follows from (55) immediately. o
Let Ui" and U2 be the functions provided by Theorem 3.4. For any real num-
ber s > 0 and point zp € Q’s", we define analytic functions ¥, : Q7 — C and
ot Q% — €, n=1,2,..., by the formulae
in 1 in %1 — 20
lI”nszo (21) = \—/-; \I’n ( s )7 (57)



lI,out ( )

n,8,20

1 29 — 20

. \Ijout =), 58
FUEET, (58)
for all 2z € Q" and all 2z, € Q2% . Moreover, suppose that 1" and 2t are the
functions prov1ded by Theorem 3.1. For any real number s > 0 and point 2o € D", we
define functions ;" : D™ — € and 2%, : D% — C, n=1,2,..., by the formulae

8,20 Nn,8,20 8,20

1
nszo( ) \/g (59)
ou 1 out %2 — 2
n,:,zo (22) = 7-— 11["77. t(2_2)7 (60)
for all z; € D% and all z, € D (see Section 2.1 for definitions of D" " Do
Qm out
$,20 9% 8,29

The following theorem is an immediate consequence of Theorem 3.6 and Theorem 3.1.

Theorem 3.7 Suppose that s > 0 is a real number and zy € Di*. Then

1. The functions {4, .} form an orthonormal system in L2(Ds ") The functions

{55 2o } form an orthonormal system in L*(D3% ).

out — ofout _
qlns,zo IDout = YPnszr BT 1,2,.. ..
8. For any z; € Q" , 2, € ngito;
mn out
- Z anlnszo zl) ‘Il'nszo( ) (61)
21— 22 n=1

Furthermore, there exist constants ¢ > 0, 0 < ¢ < 1 such that for any s > 0, z, € Q"
zy € Q2% | and integer N > 0,

s,20/

S$,207

C
- Z 5, ¥ nszo Z1 \Ilfzusizo(zz) l < '; N2 qN° (62)

21 — 29 n=1

The following two theorems are immediate consequences of Theorem 3.7.

Theorem 3.8 Suppose that

o(z) =y & - (63)

i=1 % T %

is the potential due to a set of m charges of strengths qi,qs,...,qm located at
points z1,2s,...,2, inside the square QN - Ouppose further that the functions
i s QU — €, U QM — € are defined by the formulae (57), (58), and s,
are defined by (37). Then for any z € Q%%

8,207

n=1

11




with
—Snz% nszo (65)

1=1
for all n = 1,2,.... Furthermore, there ezist constants ¢ > 0 and 0 < ¢ < 1, such that
for any real number s > 0, integer N > 0 and z € Q%

8,207

Zan\lf;“:zo(z )<< © NS gl (66)

=1

Theorem 3.9 Suppose that ® given by the formula (63) is the potential due to a set of

m charges of strengths q1,q2,. .., qm located at points z1, 2, . . ., zn, inside the region Q.

Suppose further that the functions ¥ : Qin — C, \II"“t 1 Q2% — € are defined by

n,8,20 n,8,20 8,20

the formulae (57), (58), and s, are defined by (87). Then for any z € Qin

8,207

O(z) = Z a7, .0 (2) (67)
with
= —Sn Z q; ‘I’Zust zo (68)
i=1

for all n = 1,2,.... Furthermore, there exist constants ¢ > 0 and 0 < ¢ < 1, such that
for any real number s > 0 integer N > 0 and z € Q™

8,207

Zan\I’L"s ()< = N2 NS gl (69)

n=1 i=1

3.2 'Translation Operators and Error Bounds

The following five theorems allow us to translate expansions of the forms (64), (67) from
one center zp to another, and to convert expansions of the form (64) into expansions of
the form (67). We only provide proofs of Theorems 3.10, 3.11, 3.16 below; the proofs of
Theorems 3.12, 3.14 are virtually identical to the proof of Theorem 3.10, while the proofs
of Theorems 3.13, 3.15 are identical to the proof of Theorem 3.11. Thus, the proofs of
Theorems 3.12, 3.13, 3.14, 3.15 are omitted.

For a real number s > 0 and a point zo € ", we define coefficients Po% ..z and
P .20 TESPeCtively, by the formulae

Py = [, WP, (6) T, 0(6) ds(é), (70)
28,0

Pnase = [ Uieun(6) Tino(0) ds(c), (71)
Do

with k = 1,2,..., and n =1,2,....

12




Theorem 3.10 Suppose that @ defined by the formula (63) is the potential due to a

set of m charges of strengths qi,qa,...,qn located in the square Qsz , and U3 " a
functions defined by (58), with n = 1, 2 . Suppose further that
D(2) = an W%, (2), (72)
n=1
®(z) = Zb U 0(2) (73)
n=1
are the ezpansions provided by Theorem 3.8 valid in Q2% and Qg%, respectively. Then
forn = 1,2,
by = Zpi”iszo ak, (74)
with the coefficients p2% . .. defined by (70).

Proof. Since the functions {¢2%, ;} form an orthonormal system in L2(D3%),
n,2s,0 25,0

bn=/,zmwm ) Bo()ds(2) (75)
DZh k=1
= [ Y e (2) T () = 3 6%, (76)
25,0 k=1 k=1
forn=12,.... O

Theorem 3.11 Suppose that under the conditions of Theorem 3.10, N > 0 is an integer
and coefficients bY (n = 1,2,...,N), are defined by the formula

ZPZ";’i oz @ (77)

with pi% s ., defined by (70). Then there ezist constants ¢ > 0 and 0 < q < 1, such that
for any s >0, N >0 and z € Q5¥,

N m
ou c
0(2) = Y- YW o(2)] < S N4V S |gi (78)

n=1 =1

Proof. Let 0 < ¢ < 1 be the constant provided by Theorem 3.8. Clearly, it is sufficient
to show that

N
IZE’ ‘I’i’f‘io EbN\I'Zusto (z)] < N4 NZ|%|, (79)
n=1

n=1 =1

13




for some constant ¢ > 0. Now, by a combination of (39), (40), (41) and (65),

N N N
|22 0 W00(2) = 32 b0 Uno(2)l = 1 30 (6n = B) U700 (2))

n=1 n=1 n=1
N (o) o)
= I Z \II;I,‘:,O(Z) Z p;?l:,s,zo akl Z G —F Z :z.ulz s,zol k—F— Z |q2
k—N+1 n=1 \/— k=N+1 \/— =1
S N2 Z IQz] Z Z ;ulz,s,zol qk’ (80)

n=1 k=N+1

for some constants ¢; > 0, ¢c; > 0. Due to Schwarz’s inequality and (41), there exists
¢z > 0, such that for all positive integers k£ and n

Ip;?l:,s,zo| S ”‘Pztf,zo “L%Dg;‘y%)”lIl;gs,OHLQ(Dg;‘,%) S C3 k. (81)
Now (79) follows from (80) and (81). m]

Theorem 3.12 Suppose that ® defined by the formula (63) is the potential due to a
set of m charges of strengths q1,9s,...,qm located in the square Q% | and 11121’"‘3 20
functions defined by (57), with n = 1,2,.... Suppose further that

8(z) = ij:lanwzfzs,o(z) (82)
Z b ‘I;n s zo (83)

are the expansions provided by Theorem 3.9 valid in 0250 and Q" s Tespectively. Then
forn =1,2,... formula

Z p'n k s,zo (84)
with the coefficients piy . . defined by ( 71 )

Theorem 3.13 Suppose that under the conditions of Theorem 8.12, N > 0 is an integer
and coefficients b)Y (n = 1,2,...,N), are defined by the formula

Z Pn k,s,20 @ (85)

k=1

with pi, .. defined by (71). Then there ezist constants ¢ > 0 and 0 < q < 1, such that
for any s > 0, integer N > 0 and z € Qi

EbN\I'nso ()] < < N* &3 lail (86)

n=1 =1
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Suppose that s > 0 is a real number and z, € Q3%*. Fork = 1,2,...,andn = 1,2,...,
we define coefficients g, s, by the formula

koo = [ 0E5o(€) TT 0 (8) ds(6). (87)

Theorem 3.14 Suppose that © defined by the formula (63) is the potential due to a set
of m charges of strengths q1,qs, . .., qm located in the square O, and v \Ilf:fs,zo are
functions defined by (58) and (57), respectively. Suppose further that

8(z) = ianxDZ?:,o(z), (88)
8(z) = f: b, (2), (89)

are the expansions provided by Theorem 3.8 and Theorem 3.9 valid in Q%% and QZ‘ZO ,
respectively. Then for all n = 1,2,... the formula

by, = Z An,k,s,z0 Qky (90)
k=1

with the coefficients qn ks ., defined by (87).

Theorem 3.15 Suppose that under the conditions of Theorem 3.10, N > 0 is an integer
and coefficients b (n = 1,2,...,N), are defined by the formula

N
b’l]':[ = Z qnykvs7zo ak’ (91)
k=1

With gnk,s,zs defined by (87). Then there exist constants ¢ > 0 and 0 < q < 1, such that
for any s > 0, integer N > 0 and z € Q3“,

N m
ou c
|®(2) — Y bYW (2)] < S NS gl (92)

n=1 i=1
The following two theorems list certain properties of the coefficients pf{fk’s,zo, pout

n,k,s,20
and gn k,sz. They are quite similar, and we only prove the first one.

Theorem 3.16 Suppose that s > 0 is a real number, 2o € Q", and the coefficients
Prkos,z0s Phk,size 0r€ defined by formulae (70) and (71). Then

out — aout

pn,k,s,zo - pn,k,1,%Q7 (93)
in — in

pn,k,s,zo = p"hk,l,ff’ (94)
out — oin

pn,k,s,zo - pk,n,s,zo? (95)

with any k = 1,2,..., n = 1,2,..
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Proof. Due to (58) and (70)

out
pn k $y20

Iocustzo (é W?Lués 0( ) dS(E)

[
= oo 7 HCS T‘I"’“t( ) ds(¢)
- wzuf@——f) s v as

= pzu; 1, ..9.7 (96)

which proves (93). The proof of (94) is identical.
Turning our attention to (95), we observe that due to Theorem 3.1,

1
e = [, \If;:“*(s—fﬂ)T w;wg)ds(s)

= /D%: ( )\/— o outq)out( )ds(f)
11
D7, \/_ Sn

= TSV () U~ 2 ds(e

Cntir(3) B24(6 — 2) ds(e)

= pk,n,l,-?’ (97)
and (95) follows directly from (93), (94) and (97). O

Theorem 3.17 Suppose that s > 0 is a real number, zy is an arbitrary point in Qg
and the coefficients gn ks, are defined by formula (87). Then

qn,k,syzo = qn,k,l,%od (98)
foralk=12...,n=12,....

3.3 Diagonal Form of Translation Operators

In this section we construct a representation of potentials (63) in which the translation
operators are diagonal. We start with an obvious lemma.

Lemma 3.18 If z and 2 are complez numbers such that Re (z — zp) > 0, then

= /oo e~ %(z=20) gz (99)
0

Z—2p
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Table 2: Quadrature nodes and weights for N = 8.

Lk

W

00 =~ O Ut x W N~}

0.9743818326893713-01
0.4917660712345750+00
0.11476300941975544-01
0.2028186101391804+-01
0.3121662089244688+-01
0.4425614160158614+-01
0.5925421085324173+01
0.7601289009353128+-01

0.2469944279808820+4-00
0.5328649552527160+-00
0.7724853603957714 400
0.9870187246041202+4-00
0.12001216947212024-01
0.1405423586612871+01
0.1592796104486006+01

0.1765198353876860+01

One of principal numerical tools of this paper is finite quadratures for the integrals
of the form (99), approximating them by expressions of the form

o N
/ e™7%0) g~ 3 wjem i), (100)

0 s
with wj,z; chosen to minimize the error of the approximation. It turns out that the
classical Laguerre quadrature requires 56 nodes to obtain a full double precision (15-digit)
approximation to (99) for all z; € Qi* and z € B, (see Section 2.1 for the definition of
B,); it requires 28 nodes for single precision (7-digit) approximation and 14 nodes for
the 3-digit approximation. In this paper, we use quadratures for integrals of the form
(99) designed in [9]. The nodes and weights for the quadratures are listed in Tables 2-5
and the following lemma (proved in [9]) describes the performance of these quadratures
when 2, € Qi", 2z € B;.

Lemma 3.19 1. Ifthe nodes 21,23, ...,zs and the weights wy, w,,. .., ws are those given
in Table 2, then
1 8
| — 3wy e )| < 1072 (101)
Z—20 k=1
for all zy € Q“i", z € By.
2. If the nodes 1,3, ...,210 and the weights wy,ws, ..., wio are those given in Table 3,
then
1 10
| ~ 3" wy ekl m)| < 107 (102)
Z— 20 k=1
for all zy € Qi", z € By.
3. If the nodes x1,3,. .., 216 and the weights wy,ws, ..., wis are those given in Table 4,
then
1 16
| — 3wy ek EmR)| < 1077 (103)
Z— 20 k=1
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Table 3: Quadrature nodes and weights for N = 10.

Tl

W

O O 00 =IO Ot ix W N N

ol

0.79400973700479499E-01
0.40599675027044617E+00
0.95860548270566906 E+00
0.17076338623411169E+01
0.26342522431201576E+01
0.37330678114549477E+01
0.50056635563091912E+01
0.64476147019688304E+-01
0.80499560865687445E+01
0.98062704155363723E+01

0.20213268247442060E+00
0.44529201310708538E+00
0.65492570079022383E-+00
0.83991908942837771E+00
0.10125227869573986 E+01
0.11856981580215332E+01
0.13587490932348730E+01
0.15237759923040743E+01
0.16815303253729583E+01
0.18393633495134454E+01

Table 4: Quadrature nodes and weights for N = 16.

Tk

Wi

—
O WO 00 =3 O UL i W N =) IR

[ S o QO Sy Sy G Gy S
S Ut = W DN =

0.50985651676060708E-01
0.26521044170119003E+-00
0.63877523197814055E4-00
0.11575210696261956E+01
0.18084194569861214E+4-01
0.25812535628463790E+-01
0.34688375582342864E-+01
0.44670816002182331E4-01
0.55752269484049922E+4-01
0.67950948336753639E+01
0.81285324158592802E4-01
0.95753440067592314E+01
0.111339670015546 76 E+02
0.12804196003878283E+02
0.14590645231278096E+02
0.16505707680646142E+02

0.13042997567403943E+00
0.29617079732513146 E+00
0.44851876604376186E-+00
0.58677848054269013E+00
0.71331490632911526 E4-00
0.83115583049433043E-+00
0.94332332670457377E+00
0.10530465654290459E+-01
0.11635980151835418E+01
0.12764875588622437E+-01
0.13903417411114886E+01
0.15029785005709016 E+01
0.16142090491898996 E+01
0.17271419059134570E+01
0.18490423387442165E+01
0.19928836723099878E+01

18




Table 5: Quadrature nodes and weights for N = 33.

Tk

Wi

WO 00 3O Gtk WN K

0.25222297727341369E~01
0.13247759128084677E+00
0.32380669248023823E+-00
0.59671535823233030E+00
0.94802704428024797E+00
0.13742659894203061E+01
0.18719475451288249E+01
0.24377774897497581E+01
0.30687681826830449E+01
0.37622927481697938E+01
0.45161007854489040E+01
0.53283153101708052E+01
0.61974248981676391E+01
0.71222793332370721E+01
0.81020919953769825E+01
0.91364474341994351E+01
0.10225307113296538E+02
0.11368999161839711E+02
0.12568170717361438E+02
0.13823683086431 786 E+02
0.15136452987314821E-+02
0.16507283044647311E+02
0.17936750445208845E+02
0.19425207754170005E+02
0.20972906955216222E+02
0.22580224099961821E+02
0.24247959886492881 E+02
0.25977718733384464E+02
0.27772422510974588E+02
0.29637118447457170E+02
0.31580471971364523E+02
0.33617895925272799E+02
0.35778138778825402E+02

0.64680274571235485E~01
0.14962720607997425E+00
0.23260602282627724E+-00
0.31267567589062277E~+00
0.38936352755688915E+00
0.46253028974011126 E+00
0.53228190405863132E+00
0.59887920022585347E+00
0.66266415869490855E+00
0.72400998959978491 E+00
0.78329340463991183E+-00
0.84088382086631104E+-00
0.89714360915324316E+00
0.95243401551568258 E-+00
0.10071219382388539E+01
0.10615826335963539E+01
0.11161921501942585E+01
0.11713015487646939E+01
0.12271878679241548E+01
0.12839926657455333E+01
0.13416829044598757E+01
0.14000734153500639E+01
0.14589180106367176 E+01
0.15180347903942609E+01
0.15774212769044868E+01
0.16373402708097615E+-01
0.16983905310960812E+01
0.17616017849285610E+01
0.18286259025840425E+01
0.19021749030833896 E+01
0.19870826536338642E+01
0.20930613125138042E+01
0.22428277080254514E+01
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for all zo € ", z € B.

4. If the nodes z1,z2,...,z33 and the weights wy,ws,...,wss are those given in Table 5,
then . s
| — Y wy, emklFm0)| < 1078 (104)
zZz — 20 —1

for all zp € Q", z € B,.

3.4 Informal Description

Obviously, approximating the integral (99) by a finite quadrature formula gives rise to
an approximation of the function ;2 by a finite linear combination of exponentials in

each of the regions Qi", B;. Indeed, suppose that Ny is a natural number, and positive
g 1

real numbers 21, T3, ..., ZN,, W1, Ws,. .., WN, are such that
oo No .
I/ e~o=2) dg — S wp e k) < g (105)
0
k=1

for all z, € O, z € By, and ¢ a sufficiently small positive number. Clearly, (105) can be

rewritten in the form
1

zZ—2p

No
~ Z Wy e"”"(z'“), (106)

k=1

and, given an arbitrary point w € By, (106) can be rewritten in the form

1

zZ— 2y

No '
~ 3wy e7(wmR0) gmek(z-w) (107)
k=1

In other words, the potential of a charge at the point 2, has been approximated by a
linear combination of exponentials. For a potential @ given by the formula

m

o(z) =) =& (108)

i=1 2=

due to a set of m charges of strengths ¢1,¢s, ..., ¢n located at the points 2y, 25, ..., z,, in
the square (}", the expression (107) assumes the form

m . No
o) =3 - f’z_ ~ 3 oY), (109)
=1 ? =1

with the coefficients ¢, defined by the formula

Cr = Wy Z g; e_z"(w_z‘), (110)

=1
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for all k = 1,2,...,No. We will view (109) as an expansion of the function ® into a linear
combination of exponentials e=#+(>~%) | centered at w. Now, given another point @ € By,
(109) assumes the form

No i
B(z) ~ Y & e mr==D), (111)
k=1
and, obviously, )
& = ¢ e 2k(@v) (112)
for all k = 1,2,.... Thus, we are lead to the following observation.

Observation 3.20 An ezpression of the form (111) represents the potential of an ar-
bitrary combination of charges located in the region Qi*, and the representation is valid
for all z € B,. Furthermore, (112) can be interpreted to mean that in the representa-
tion (111), the translation operator for the potential fields is diagonal. In the following
subsection we formalize this observation.

3.5 Detailed Description

In this section, we use Lemma 3.19 to obtain exponential representations of the form
(111) for potentials generated by collections of charges located in Q" at all scales s > 0.
Error estimates for such representations are provided by Theorem 3.21 below. We start
with the following obvious generalization of Lemma 3.19.

Theorem 3.21 Suppose that € > 0 is a real number, and real numbers z4,z,, ..., zy,
0
and wy,ws,...,wN, are such that
1 Jo
| — Y w, el < ¢ (113)
Z— 2y n—=1

for all 20 € ", z € B,. Suppose further that s > 0 is a real number, w € B;, and the
functions E, 50 : C— C (n=1,2,...,N;), are defined by the formula

Z—wW

1
Epsw(z) = 5 exp(—zn ) (114)

for all z € C. Finally, suppose that

®(2) = 11
0=3 2 (115)
is the potential due to a set of m charges of strengths q1,qa,...,qn located at points
21,22, - -+, 2m tinside the square Q. Then for any z € B,
No £ m
12() = 3 buBns()] < 53 la, (116)
n=1 =1
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with
w—2z;

by =wn Y g exp(—z ), (117)

=1 s

foraln=12... No.

The following theorem is an immediate consequence of the definition (114) of the
functions E, ;.

Theorem 3.22 Suppose that under the conditions of Theorem 3.21, w, % € B, and

No

@(Z) ~ Z anEn’s,w(Z), (118)
n=1
No

2~ Y buBnesl2), (119)
n=]

are the expansions provided by Theorem 3.21. Then

W —w

b, = exp(—=z ) @n, (120)

foralln = 1,2,...,Np.

Suppose that s > 0 is a real number, w € B, and ¥ , E, ,,, are functions defined

by (58) and (114), respectively. We will define coefficients r, k5w by the formula
Wy,

s = 52 [ WEea(€) Buse(w) ds(6), (121)

n

where s1,52,..., are given by (37) and k =1,2,...,and n = 1,2,..., N,.

Theorem 3.23 Suppose that s > 0 is a real number, ® given by the formula (63) is the
potential due to a set of m charges of strengths q1,qz, . ..,qm located in the square Qi",
and

E U35 0(2); (122)

n=1
is the ezpansion provided by Theorem 3.8. Suppose further, that € > 0 is a real number
and

O(z) ~ %0: bnEon s (2), (123)
is the approzimation provided by Theore::t?.m. Then for n = 1,2,...,Ny
b, = f: Trkysiw Qs (124)
with Tn ks defined by (121).
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Proof. Due to (58), Theorem 3.1 and Theorem 3.21

ou 1 out(? 1 _ Tin(?
e o(2) 7 vy t(;) = xsklcout Uy (g)
1, 1

= T‘Sk D"‘ é- _z ‘I’m(é)db’( )

L 3" / enlt-0 T

~  —— n Tnly Pin d
Tk e F(€)ds(€)
| T 3

= %Sklnz:%wne ~(555) i 5”12 (550 b (;)ds({)
No

= Z Tn,k,s,wEn,s,w(z), (125)
n=1

for each £ = 1,2,.... Now (124) follows immediately from (125). ]

Suppose that s > 0 is a real number, w € B, and ¥2% , E, ., are functions defined
by (58) and (114), respectively. We will define coefficients €nk,sw Dy the formula

oo = [ Tl Enso(€) ds(9), (126)
k=12,...,andn=1.2,..., No.
The proof of the following theorem is quite similar to that of Theorem 3.8, and is

omitted.

Theorem 3.24 Suppose that s > 0 is a real number, ® given by the formula (63) is the

potential due to a set of m charges of strengths q1,qs,...,qn located in the square Q"
and
8(2) = 3 b o(2), (127)
k=1

is the expansion provided by Theorem 3.9. Suppose further, that € > 0 is a real number
and

B(z) ~ Z an B w(2), (128)

n=1

is the approzimation provided by Theorem 3.21. Then fork = 1,2,...

No
bk = Z €n,k,s,w Cny (129)

n=1

with en ks defined by (126).
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Level 0 Level 1

Level 2 Level 3

Figure 3: The computational box and three
levels of refinement.

4 The multipole algorithm

4.1 Notation

Without a loss of generality we can assume that all particles are located in the unit
square centered at the origin. We will refer to this square as the computational box. A
hierarchy of meshes is introduced in the computational box. Mesh level 0, denoted by
By, corresponds to the entire computational box. Mesh level [ + 1, denoted by B4y,
is obtained from mesh level [ by subdividing some boxes into four equal squares (see
Figure 3), which will be referred to as children of the given square. We fix an integer
number s > 0 and at each level we subdivide only those boxes, which contain more than
s particles. A box which is not subdivided is called childless.

Colleagues of a box are adjacent boxes of the same size.

Two boxes of the same size which are not adjacent, are called separated.

For each box b there are four lists of other boxes, defined as follows.

List 1 of a box b is denoted by Up; if b is childless, it consists of b and all childless
boxes adjacent to b. If b is a parent box, then Uy is empty.

List 2 of a box b is denoted by V;. V; is formed by all the children of the colleagues
of b’s parent which are separated from b (see Figure 4).

List 3 of a box b is denoted by W;. If b is childless, W; consists of all descendants of
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Figure 4: Interaction List 2 for a dashed box.

b’s colleagues whose parents are adjacent to b, but which are not adjacent to b themselves.
If b is a parent box, W, is empty.

List 4 of a box b is denoted by Xj; it consists of all boxes ' such that ¥ € W;.

Up** will denote the p-term expansion of the form (64) of the potential due to particles
located in b.

W3 will denote the p-term expansion of the form (64) of the potential due to particles
located outside U, U W;.

4.2 Informal description of the algorithm

The data structure used by our algorithm is virtually identical to the one presented in
[2]. It relies on clustering of particles at various scales. The computation of interactions
between clusters separated from each other is performed via the expansions (64) and
(67), while the interactions between nearby particles are computed directly.

In order to adapt our grid to a given distribution of particles we fix an integer s > 0
and subdivide only those boxes which contain more than s particles.

The algorithm consists of the following stages.

(1) We create a hierarchy of meshes in a computational cell.

(2) For each childless box b we directly evaluate interactions between particles in b
and particles in U, List 1 of b.

(3) For each childless box b we form the expansion ¥g* into outgoing singular func-
tions by means of Theorem 3.8.
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Figure 5: A box and associated Lists 1-4.
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(4) For each parent box b we form the expansion ¥{* by merging expansions of its
children via Theorem 3.12.

(5) We convert all expansions ¥ into the exponential form via Theorem 3.23.

(6) We use Theorem 3.22 to shift the q-term exponential expansion to each box in
Vs, List 2 of b.

(7) For every particle r € b, we compute the field due to all particles in W, List 3 of
b, by summing up the expansions ¥ for all w € W, and add it to the potential at this
point calculated in (1).

(8) We convert the field of each particle in X3, List 4 of b, into the expansion Wi".

(9) We convert all exponential expansions into expansions ¥i" via Theorem 3.24 and
combine them with the result of (8).

(10) For each child box b we shift the expansion of its parent (Theorem 3.9) and add
it to the expansion Ui".

(11) For each childless box b we evaluate the expansion Wi* at every particle r € b
and add it to the result of (7), obtaining the field at r.

4.3 Detailed description of the algorithm
ALGORITHM

Comment [Choose main parameters.]
Choose precision € to be achieved. Set the length of expansions according to

Table 1.
Set the maximum number s of particles in a childless box.

Step 1
Comment [Refine a computational cell into a hierarchy of meshes.]

dol=1,2,...
do b; € B,
if b; contains more than s particles then
subdivide b; into four boxes and add the nonempty boxes
formed to Bjy;.
end if
end do
end do

Comment [We denote by nlev the highest level of refinement and by nboz the total
number of boxes formed at Step 1.]
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Step 2

Comment [For every particle in each childless box b compute directly the
interactions with particles in Uj, List 1 of 4.]

do i = 1,nbox
if b; is a childless box then
for each particle r € b; compute interactions between r and

all particles in Uy,.
end if
end do

Step 3

Comment [For every childless box b form an expansion into outgoing singular
functions about the center of b via Theorem 3.8.]

do i = 1,nbox
if b; is a childless box then
use Theorem 3.7 to form a p-term expansion ¥g**
representing the potential due to all charges in b;.
end if
end do

Step 4

Comment [For each parent box b use Theorem 3.10 to shift the center of each b’s
child box’s expansion to b’s center and add the resulting expansions
together.

do 1 = nlev-1,1,-1
do b; € B;
if b; is a parent box then
use Theorem 3.10 to obtain a p-term expansion U™ by
shifting expansions of B;’s children to b and adding the
resulting expansions together.
end if
end do
end do

Step 5

28




Comment [For each box b use Theorem 3.23 to convert the expansion ¢ to the
exponential form.]

do i = 1,nbox

use Theorem 3.23 to convert the expansion W™ to the exponential form.
end do

Step 6

Comment [For each box b use Theorem 3.22 to shift the exponential expansion from
b to each box in V;, List 2 of b.]

do i = 1,nbox
use Theorem 3.22 to shift the exponential expansion from b to each box
in V4, List 2 of &.

end do

Step 7

Comment [For each childless box b, evaluate the expansions W2 for all w € W},
List 3 of b, at every particle r € b.]

do i = 1,nbox
if b is childless then

evaluate the expansion U3 of each box w € Wj at every particle
r€b.
end if
end do

Step 8

Comment [For each box b, create the expansion ¥i" representing in b the field due to
particles in X, List 4 of b.]

do i = 1,nbox
Create the expansion Wi of the field due to all particles in Xj.
end do
Step 9

Comment [For each box b use Theorem 3.24 to convert the exponential expansion
into the expansion of the form (67) and combine with the expansion Wi
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computed in Step 7.]

do i = 1,nbox
use Theorem 3.24 to convert the exponential expansion the expansion of
the form (67) and computed it with the expansion W™.

end do

Step 10

Comment [Use Theorem 3.12 to shift the local expansions ¥ of parent boxes to
their children.

do 1 = 1,nlev-1
do b; € B,
if b; is a child box then
use Theorem 3.12 to shift a p-term expansion ¥
from b’s parent to b and update T,
end if
end do
end do

Step 11

Comment [For every childless box b evaluate the expansion Ui" at each particle
r € b and add it to the result of Step 7, obtaining the potential at r.]

do i = 1,nbox
if b; is childless then
for each particle r € b; evaluate the p-term expansion ¥}?

obtaining the potential at location r.
end if
end do

4.4 Complexity analysis
Step Operation

count
1 Np Each particle is assigned to a box at every level. There are
at most p levels of refinement.
2 33Nps The direct computation of interactions between any two
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childless boxes requires at most % operations. The total

number of boxes appearing on a List 1 of a box does not
exceed 22 (see [2]).

3 Np Each particle contributes to a p-term expansion U of
a unique childless box b containing it.

4 §]—\£Pi Each translation requires p? operations and there are at most
82 boxes (see [2]).

5 ﬂsﬁi Each translation requires pq operations. The total number
of boxes is bounded by %’2

6 Qé;m Each diagonal translation requires ¢ operations and there

are at most 27 boxes on any List 2.

7 32Np? Computing the interactions of all particles in a box b with
a box in W, requires ps operations. The total number of
boxes appearing on a List 3 does not exceed 222 (see [2]).

8 32N p? Computing the interactions of a box b with all particles in
a box in X requires ps operations. The total number of
boxes appearing on a List 4 does not exceed -3%1!2 (see [2]).

9 @7-}21 Each translation requires pq operations. The total number
of boxes is bounded by ﬂ—svﬂ
10 SNp® Each translation requires p? operations.

s
11 Np+N A p-term expansion ¥§* is evaluated at each particle.
Summing up requires extra N operations.

Combining the CPU times for all the above stages, we obtain the estimate

3 2
T =N(a?Z +b-’%+cPs+dp2), (130)

S
where the constants a, b, ¢,d depend on the implementation. The parameter s, the maxi-

mum number of particles in a childless box, should be chosen so as to minimize the CPU
time. An elementary calculation shows that the minimal time T},

Tmin = sz‘”a + ﬂ %7 (131)

(132)

is obtained for




with constants c, 3 dependent on the particular implementation. Since p ~ g, we arrive
at the estimate

1
Tmin = 7Np* = 7N (log; _)*, (133)

where the constant v depends on the implementation.

The storage requirements are determined by the lentgh of expansions and the total
number of boxes, which does not exceed %’2 Per box, we store 2p coeflicients of singular
functions and 4q coefficients of exponentials. Additionally, we store the position and the
charge of each particle and corresponding p values of singular functions. Therefore, the
storage requirements are of the form

S =N(c

10p% + 20
1 _p_‘;__pg + c2p) (134)

with the constants ¢y, ¢; dependent on the implementation. If s = s,,;,, We obtain
1
S = c3 Nlog, o (135)

where ¢; depends on the implementation.

Remark 4.1 A careful examination of (135) shows that even though the storage re-
quirements of the algorithm are proportional to the number of particles, the associated
constant is quite large, especially in double precision calclations. This limits the size of
problems which can be handled in computing environments where the available memory
is limited. Moreover in systems with virtual memory, it is liable to increase the wall-clock
time of the algorithm. This problem is presently being addressed by the authors.

5 Numerical results

The algorithm described in Section 4 has been implemented in Fortran 77 and numerical
experiments have been performed on a SPARCstation 2. We compare its performance
with an implementation of the FMM from [2], and with direct application of the poten-
tial matrix. We give the results for three regimes: particles uniformly distributed in a
square, particles located uniformly on a curve and particles clustered within a square.
All calculations were done in double precision, and extended (quadruple) precision was
used to determine the relative errors. The number of particles varied between 400 and
25,600, with charge strengths randomly distributed on the interval (0,1).

The results of our experiments are given in Tables (6-8). In each table the first
column contains the number N of particles in a simulation. Second,third and forth
columns show the CPU times Trew, Toid, Tair in seconds of the present algorithm, the
algorithm described in [2] and of the direct calculation, respectively. The fifth, the sixth
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Table 6: Uniformly distributed particles.

N Tnew Told sz"r Enew Eold Edz"r
400 0.3 1.5 1.0 || 2.2107%6 | 441016 | 4.310"16
800 0.8 2.7 4.1 |{ 3.4107%¢ | 1.410-15 | 6.110~16

1600 1.5 7.1 16.9 || 3.41071% | 5.210~15 | 2.210~16

3200 35| 109 68.6 || 3.110~%¢ | 1.310~1% | 8.510"16

6400 6.4 | 322 277.3 || 2.410~%¢ | 561016 | 1.310-15

12800 f| 12.9 | 46.9 | (1100) || 3.610~16 | 4.910-16 -
25600 || 26.7 | 143.5 | (4400) || 4.9107%¢ | 4.610"1¢ -

Table 7: Particles distributed on a curve.

N Tnew Told T dir Enew Eold Edi'r
400 03 1.2 1.0 {| 2.61071* | 1.7107% | 2.510-14
800 06| 25 4.2 |/ 2310714 | 3.210-1¢ | 2.310"1¢

1600 1.2 38 172 || 7710714 [ 9.210~1¢ | 5,110~ 24

3200 26| 7.7 69.4 || 3.4107%% | 4.110"¢ | 8.910~ ¢

6400 54| 154 | 283.2 (1 2.110°%3 | 281018 | 3.110-13

12800 10.9 | 30.7 | (1100) || 2.310"13 | 3.710"18 -
25600 21.6 | 58.8 | (4400) || 7.410-13 | 6.9 1013 —

and the seventh column contain the corresponding relative errors E,cw, Eoig, Egir. The
errors are computed in the /2 norm via the formula

(Zhy 1o - 542)%
(S, 1ei)*

where @; is the value of the potential at the ith particle position obtained in a direct
calculation in extended (quadruple) precision, and ®; is the corresponding value obtained
by one of the three methods in question.

In the first set of experiments particle positions are generated randomly, resulting
in their nearly uniform distribution (Figure 5). In the second set of tests particles are
uniformly distributed on an ellips (Figure 6). The third set of tests is performed for a
nonuniform distribution of particles within a square (Figure 7).

In all cases the maxium number of particles in a childless box is set to 44.

E= , (136)
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Ftigure 6: Uniformly distributed particles and the asso-
ciated partition of the computational box.
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Figure 7: Particles distributed on a curve.
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Figure 8: A nonuniform distribution of particles.
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Table 8: A nonuniform distribution of particles.

N Tnew Told Tdi'r Enew Eold Edir
400 0.5 14 1.0 || 3.510°13 | 3.510-13 | 3.01013
800 1.2] 28 421110712 | 1.110712 | 1.110712

1600 2.3 5.2 17.1 || 1.110-12 | 1.110~%2 | 1.11012

3200 49| 116 69.0 || 3.9107%3 | 3.910~13 | 3.710"18

6400 87| 258 2852 | 4.910-13]4.910°13 | 2.710°12

12800 17.8 | 52.6 | (1100) || 6.710~1% | 6.810"12 —
25600 34.7 | 110.6 | (4400) || 2.510712 | 2.510712 -

The following observations can be made from the experiments:

(1) The CPU time of the present algorithm grows linearly with N. The breakeven
point with the direct calculation ranges from Ny = 140 for uniformly distributed particles
to No = 190 for a highly nonuniform distribution.

(2) The performance of the algorithm does not depend significantly on the type of the
particle distribution. The timings for a highly nonuniform distribution are about 60%
higher that in the case of uniformly distributed particles.

(3) The accuracy obtained by the algorithm agrees with the error bounds (3.15) and
(3.13).

6 Conclusions

A new version of the Fast Multipole algorithm for Coulombic interactions has been devel-
oped. While the prior schemes use Laurent and Taylor series to represent the potential,
we use singular functions of an appropriately chosen operator, obtaining a much faster
‘convergence. We also introduce an intermediate representation, in which most transla-
tion operators are diagonal. In two dimensions, the resulting scheme is three to five times
faster than the best implementations of the old FMM we are aware of; we expect the
ratio to be much higher in three dimensions.

The CPU time estimate and the storage requirements for the algorithm are of the
order of O(NV), where N is the number of particles. Its performance does not depend
significantly on the particle distribution.

The three-dimensional version of the algorithm is being implemented, and will be
presented at a later date.
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Appendix A

Estimates for the singular values of the operators C;,
and C,,:

In this section we will express the operators C;, : L2(D°**) — L2(D™"),
Cous : L*(D*™) — L*(D°**) by means of the Cauchy integral operator commonly encoun-
tered in complex analysis and derive inequalities (39) from corresponding inequalities for
the new operator.

We will define arclength parametrizations y; : [0,4] — D™, 4, : [0,12] — D°*, of the
squares D" D% respectively, by the formulas

T—t+1 for 0<t<1
1 1 .
14—ty for 1<t<?2
— 2 2
n(t) = . QIR ¥ for 2<t<3 (137)
Li(=14t) for 3<t<d4
nt)=3m(z)  for  0<t<I2 (138)

Obviously, except for the corners of the squares, 7y, 7, are differentiable and
Ml =lnl=1

Finally, we define the Cauchy integral operator Co : L2(D™) — L?(D°**) by the
formula

Cof(Z) — 27rz éf(f) df

S S A (35 4((9)
= il e ds(£). (139)
Observation A.1 Denoting by M., : L*(D™) — L*(D'") the unitary operator of mul-

tiplication by y;, we observe that Co = CoutM,;. Therefore, the singular values of the
operator Coys are identical to those of Cy.

Suppose that r;, r, are real numbers such that % <r < r < % We will
denote by S, and S, the circles Sy = {|z] =} and S; = {|z| =r,} oriented coun-
terclockwise. We define, respectlvely, the integral operators Cj? : L%(S;) — L?(D°*),
C3'™ : L*(S1) — L2(S,), C3t : L3(D™) — L*(S,) by the formulae

R3]

2ri s, E— 2z

Cr*f(2) = d¢, (140)
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17 f@

2ri Js, € — 2

C3" f(2) = d¢, (141)

1) =5 [ £ © g (142)

Lemma A.2 If the operators Cy, C1?, C3™, C3' are defined by formulae (189-142), re-
spectively, and 35 <r<ry<% 3 then
Co = C2Co1 2 C3t. (143)

Proof. Applying twice Cauchy’s integral formula for an unbounded domain (see [6, vol.1,
p.318]), for an arbitrary function f € L*(D™*) we have

G (G5 F)(€) = —C3* £(8), (£ € 52), (144)
CP*(C3' )(2) = —C5* f(2), (z € D™). (145)
Combining (144) with (145), we obtain
Cr*(C2 5 F)(2) = C*(—C3' f)(2) = C3* f(2) = Cof(2), (146)
for any z € D, ]

The following lemma is well-known (see [3, p.98 and p.144]).

Lemma A.3 Suppose that X,, X,, Xs, X4, are piecewise smooth curves in R2. If
A: L*(X;) = L*(Xy), B : L*(X3) — L3(X3), C : L¥(X4) — L*(X3) are bounded in-
tegral operators, and B is ¢ Hilbert-Schmidt operator, then the composition ABC is a
Hilbert-Schmidt operator. Moreover, if we denote by s,(B) and s,(ABC) the singular
values of the operators B and ABC, respectively, then

sn(ABC) < ||A[[C]| sn(B), (147)
for all n=1,2,....

Lemma A.4 Suppose, that {¢.} and {1} are orthonormal systems in L%*(S;) and
L*(S,), respectively defined for n=1,2,..., by formulae

$a(§) = \/-2”—7,1 (%)n, (148)

Ya(2) = “\/21?75 (%)n (149)
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Then - 1
Grf=y (B)7 (sn (150)

is a Singular Value Decomposition for the operator C3*™ : L*(S;) — L*(S;). In particu-
lar, the singular values s,(C3*"*) of C3*'™ are given by the formulae

s =(2)", (151)

T2

forn=1,2,....

Proof. Obviously, for any £ € S, z € S,

S (152)

€_Z n=1

Combining (141) with (152), we obtain

i) = g L a= LS [ e a

2re U8 E— 2 2w fo
1
27y

g 2 [ SO € ds(®

= G S VI (a) [, SO VBT 7 R )

51 n=1

™

-3 <—)n—% ( fn) ¥n(2) - | (153)

n=1 T2

]

The following two theorems establish bounds from above and from below for the
singular values of the operator Co.:. We only prove Theorem A.5 below; the proof of
Theorem A.6 is nearly identical, and is omitted.

Theorem A.5 For any real number 5? < p <1 there exists a constant ¢ > 0, such that
30 (Cout) < cp”, (154)
for all n=1,2,..., where s,(Cou:) are the singular values of the operator Cpys.

Proof. Defining real numbers r;, r; by the formulae

V24 3p
4 ?

™m =

(155)

40




re = —, | (156)

we observe that

2
"\g—— <r<re< g— (157)

Let us consider the operators Co, Ci?, C;'""?, C3* defined by formulae (139-142). Clearly,
% <m<r<ip= L. Combining (143) with (147), we obtain

$n(Co) = $a(C1*C3"C5) S |ICP2|] 5n(C51™) 112l (158)

According to Observation A.1, the singular values of operators C,,; and Cy coincide. Now
Lemma A .4 gives

1

sa(Cost) = (Co) < P ) NG = ¢ (2) =, (159)

for all n=1,2,.... O

Theorem A.6 For any number 0 < p < ﬁg there exists a constant ¢ > 0, such that
Sn(coutyz cpn’ (160)

for all n=1,2,..., where 3,(C,ut) denote the singular values of the operator Coys.
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Appendix B

Estimates for the singular functions of the operators
Cm and Cout

In this section we estimate the maxima of singular functions of the operator Cpy ;. We
begin with four technical lemmas.

Lemma B.1 Ifn > 0 is an integer and P : C — C is a polynomial of degree n — 1, then
n
Pllreof-11 £ —= | P|lz21-1.11, 161
IPllpmtcs0 < T [Pl (161)

(for definitions of || - ||z2(—1,1) and || - ||pec[-1,1] See Section 2.1).

Proof. Let P denote the Legendre polynomials on the segment [—1,1]. It is well-known
(see [1]), that

| Pellzosf-1,) = 1, (162)
2
2 —
1 Pellz2(-1,0 = %11 (163)
Obviously, there exist unique complex coefficients cg, ¢y, . . ., ¢,—1 such that
n—1
P=)> ¢ P, (164)
k=0
and, consequently,
n—1
2 _ 2|
IPVcss = 5 e IPulca = 3 o g2 (165)

Now, due to Schwarz’s inequality, we have

1Plien < 3 lesl [ Pellzmponn = 5 foul = 52 V2R 4T V2
k=0 k=0 k=0 V2 V2k+1

1
"12k+1) ( )5 n
= = —= ||P||r2[-1,11- 166
(£57) Eerar) = Hiovan o

0

The following lemma is readily obtained from Lemma B.1 by scaling.
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Lemma B.2 Suppose, that n > 0 is an integer and P : C — C is a polynomial of degree
n—1. If I C C is any segment of length a > 0, then

n

| Pllze(r) < Tz

| Pllz2(n)- (167)

Lemma B.3 There ezists a constant ¢; > 0 such that for any segment I C D of length
a > 0, integer n > 0 and any f € L*(D™) there ezists a polynomial P of degree n — 1
satisfying

“coutf - P”L‘”(I) <¢ga® ”f”21 (168)

with the operator Coys : L*(D'™) — L%(D°%) defined by (30).

Proof. Differentiating (30) n times we obtain

™) () = p! _f(f)___
Cnt§) ) =l [ o= Sy 45(6), (169)
and, due to Schwarz’s inequality, we have
[(Cout )Mo < 1 nd || Fll2, (170)

where ¢; > 0 is a constant. Let us denote by 2 the midpoint of the segment I and let P
be the Taylor polynomial of order n — 1 centered at 2o for the function C,y:f. Now, the
Taylor’s formula implies that

|Z —_ Zoln

(Cout f(2) = P(2)| < == max|(Coue /) ()], (171)

and therefore

n

[Cosef = Pllzm(t < 5oy 1Cout$) oo S & 5z ISl S cra™ [l (172)

— 2" nl
O
Lemma B.4 There ezists a constant ¢ > 0, such that for any f € L*(D™)
Cou
[Cost lle < ¢ Cous s (1og {ellile , 1), (173)
”Coutf”2

where the operator Coyy : L*(D™) — L2(D**) is defined by (30).
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Proof. Let 0 < a < 1 be a real number and I any segment of length a included in the
square D°**. For an integer n > 0 and f € L2(D™) denote by P the polynomial provided
by Lemma A.9. Due to Lemma A.8 we have

”Coutf”L“’(I) < “coutf_ P”L°°(I) + ”P”L“(I)
< NCoutf = Plireo(ry + —= \/— I Pllz2(z)- (174)

We will need the following obvious inequality

IPllz2y < NCouf = Plizeqgy + lICout fllz2(r)
S \/E “coutf - P”L°°(I) + “Coutf||L2(I)- (175)

Combining (168), (174) and (175) we obtain
ICoutfllzeory < (n+1) Coutf — Plizooqry + —= \/— 1Cout fllz2(1)

1
< en (an”f”z + T ”coutf”2>

alCout|ll|fll2 , 1
< c3n||coutfllz( TCouls + f) (176)

with some constants ¢; > 0, ¢z > 0. Setting a = % (where e is the base of natural
logarithms), and

ICoutllllf1l2

log Aoutllil) 112
n = [ 1Cout Tz +1, (177)

we arrive at c
[Cone iy < e Crse il og (Lol Al | 1) (179)
”coutf ”2

where ¢ > 0 is a constant. Since every point in D°* is contained in some segment
I C D°* of length a = 1, the lemma follows. |

Now we proceed to the principal result of this section.

Theorem B.5 Let i, 2% be the left singular functions of the operators Cip, and Coys,
respectively. Then there exist constants 0 < ¢ < 1 and ¢ > 0 such that

[l < cn, (179)
[ llec < en, (180)

for all n=1,2,....




Proof. Since Cout¢%™ = s,9%, Lemma A.10 implies that, there is a constant ¢; > 0,
such that

[[Coutll]| 672 )
i 02 4
A [

1
= ¢ Sn <log = + log ||Cout|| + 1> . (181)

e < o all ]l (log

Now, due to Theorem A.6, there exists a constant ¢ > 0, such that
%7 leo < €, (182)

for n=1,2,.... It is easy to see, that Lemma A.10 holds with C,,; replaced by C;, = CZ

out?

and therefore this proof extends to the case of the left singular functions " O
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